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Abstract. Algebraic expressions for the vertical Delocalisation Energy (DE) of 
benzene are derived from non-empirical MO theory. For  comparison with early 
work in the re-electron approximation, and ultimately with Hiickel theory, the 
results are formulated in terms of a core resonance integral,/?, and re-electronic 
repulsion integrals. All integral values are inferred from the results of ab initio SCF 
calculations. Two expressions are derived, which refer to two ways of forming the 
localised r~ MOs: one where three pairs of adjacent atomic orbitals are selected 
from a set of six orthogonalised orbitals; and another where a non-orthogonal set 
of atomic orbitals is used. The first expression is formally similar to an expression 
originally derived by Pople from a different point of view and with many approxi- 
mations. This expression gives too large a magnitude for DE when used with an ab 
initio value of/?. The second expression gives a result much closer to an empirical 
value of DE and shows that the main reason for DE being about 50% of 217 rather 
than 2/? is the stabilising effect of overlap in the localised structure, and that the less 
important  factor is the inclusion of electronic repulsion. 
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Introduction 

Ab initio studies [1 - 4] of benzene and especially recent work [1-3] analysing the 
influence of rc electron delocalisation upon molecular geometry, have produced an 
interesting range of values for the vertical delocalisation energy (DE). This quan- 
tity, which is the same as the quantum mechanical resonance energy, may be 
defined [4] as the electronic energy of benzene minus the electronic energy of the 
non-resonating triene which has the same geometry as benzene. The definition 
does not say how the model wave function for the non-resonating triene should 
be chosen, and this choice can have a greater effect on the value of DE than the 
variational level of the calculation. 

The VB scheme seems to provide the most natural choice of model wave 
function - the single Kekul6 bond eigenfunction. However, it is only recently that 
this approach has been implemented with fully optimised wave functions. Bernardi 
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et al. [1] have determined a CAS-SCF wave function for benzene using a 4-31 G 
basis and an active space confined to the ~z orbitals. This wave function was then 
accurately transformed to a VB form which included all the Dewar and both the 
Kekul6 bond eigenfunctions. It was found that the energy of a single Kekul6 bond 
eigenfunction was 62.4 kcal mo l -  1 above that of the full CAS-SCF wave function, 
i.e. DE was - 62.4 kcal mol -  1 

Most other determinations of DE have started with an SCF MO wave function 
tbr benzene. In this approach, the model wave function for the non-resonating 
molecule is obtained from the SCF wave function by replacing the three canonical 
rc MOs with three localised MOs. The constitution of the localised MOs turns 
out to be critical. Glendening et al. [2] report a value of - 147 kcal tool -  ~ using 
a 6-31 G basis. They constructed their localised MOs by first transforming their 
canonical MOs to a basis of symmetrically orthogonalised atomic orbitals and 
then combining orthogonal orbitals centred on adjacent atoms. A rather different 
value, - 8 5 . 2  kcalmo1-1, was obtained by Shaik et al. 1-3] also using a 6-31 G 
basis. Their localised MOs were obtained by first determining the bonding rc MO  
of ethylene (through an SCF calculation using a benzenoid C-C bond lengths) and 
then placing three such MOs on a benzene framework and orthonormalising 
the set. Glendening et al. [2] cited spectroscopic evidence 1-5] (the 1Alg ~ 1Blu 
transition energy) in support of their value of DE. This is an unsound argument. It 
is only in Hiickel theory [6] that the lowest ~-x* transition energy, AE, is the same 
as (minus) DE, and even then an average value of AE should be taken, because 
Hiickel theory does not distinguish between energy levels arising from the same 
configuration. Both quantities are predicted equal to 12ill, where fl is the Hiickel 
resonance integral. This prediction is usually regarded as an artefact of the Hiicket 
approximation, and not as a correlative definition of DE. 

The method of using ab initio calculations on ethylene to model the localised 
MOs appears to have originated with Kollmar [4], who obtained a DE value of 
-- 86.4 kcal tool -  1 using a double zeta basis. Kollmar also investigated the effect 

on DE of allowing the a electron distribution to adapt to the localisation of the 
rr electrons, and the effect of including correlation energy. The effect of a relaxation 
was small, stabilising the localised structure by only 1.2 kcal tool - 1, but the effect of 
including correlation energy, through PMO-CI  calculations, was more significant. 
The localised structure was made relatively more stable by 16.0 kcal mol-1 when 
~-electron correlation was taken into account; but cr-r~ correlation favoured the 
delocalised structure by 6.9 kcal mol - 1. The overall effect of including correlation 
was thus to reduce the magnitude of DE by about 9 kcal mol - a. 

The experimental determination of DE is also slightly problematic because of 
uncertainties in the assignment of bond enthalpies and force constants in a hypo- 
thetical molecule. A widely cited empirical value of DE is due to Parr  and Mulliken 
[7]. These authors first determined the thermochemical resonance energy of 
benzene to be -- 41.8 kcal tool-  1, and then subtracted the energy, 36.6 kcal mot - x, 
needed to distort a structure of alternating single (1.54 A) and double-bond lengths 
(1.34 A) to a structure with uniform bond lengths (1.39 A). The distortion energy 
was determined from spectroscopic force constants typical of alkane and alkene 
carbon-carbon bonds. Thus, the empirical value of DE is around - 78.4 kcal mol - i 
- in excellent agreement with the theoretical value of Kollmar with correlation 
included. (Parr and Mulliken regarded the thermochemical part of their calcula- 
tions as more uncertain than the distortion energy.) 

The aim of this work is to give algebraic expressions for DE, derived without 
any unquantifiable approximation from SCFMO theory, which will explain why 
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Glendening et al. obtained such a large magnitude for DE and why the 
more generally accepted magnitude is considerably less than the u ~ u* excita- 
tion energy. The expressions wilt be algebraically comparable with Hiickel 
theory and will give results numerically comparable with ab initio SCF 
calculations. 

The idea of retaining some of the structure of Hiickel theory in an improved 
method, explicitly including u-electronic repulsion, is very old and takes us back to 
the historic calculations of Pariser and Parr [8] on the electronic spectrum of 
benzene and of Pople [9] on DE. Although these calculations are usually presented 
as approximate forms of MO theory, their explanatory power is compromised to 
some extent by the use of parameters designed to give better agreement with 
experimental quantities than exact MO theory could give. The presence of para- 
meters makes the approximations which are introduced difficult to validate, and it 
is not clear that the underlying model really is MO theory. Indeed, so far as the 
Pariser-Parr calculation is concerned, it has been convincingly argued [10] that 
the parameters which reproduce the spectrum of benzene effectively model a CI 
Hamiltonian, and not an SCF Hamiltonian. For the calculation of DE, on the 
other hand, the inclusion of electron correlation is tess critical than it is for the 
calculation of spectra, and it would be interesting to see what MO theory says 
about DE without parameters and without the approximative assumptions which 
Pople made in regard to the core Hamiltonian. 

There was one non-empirical calculation of DE before the era of ab initio 
calculations: Parr and Mulliken [7] calculated DE using localised MOs of the 
ethylenic form and the core Hamiltonian of Goeppart-Mayer and Sklar [11] 
(GMS). This Hamiltonian is explicitly defined, but it is not the core Hamiltonian 
which is variationally appropriate for MO theory in benzene, being bereft of 
hydrogen atoms and a-u exchange interactions. Using the GMS framework, Parr 
and Mulliken obtained a theoretical value of DE in better agreement with their 
empirical value than any subsequent ab initio MO calculation, for reasons which 
are not immediately obvious. 

The first step in this paper is the formulation of the core Hamiltonian as part of 
the SCF Hamiltonian. The only approximation then introduced is the ZDO 
approximation for electronic repulsion integrals involving orthogonalised 2pu 
orbitals. This approximation, which should be distinguished from Pople's 
formal neglect of overlap, has been the subject of much study [12, 13] and its 
effect on results can be quantified. Using this approach the algebraic results of 
Pople can be obtained without any further approximation, and the numerical 
result of the Parr-Mulliken calculation can be brought into line with ab initio 
calculations. 

SCF Hamiltonian, the core Hamiltonian and the total pi energy 

For an electron in a closed-shell molecule the SCF Hamiltonian, F, may be written 

f = ~ + (7, (1) 

where/4 is the sum of the kinetic energy and bare nuclear attraction operators and 
is the electron interaction operator. For molecules with a plane of symmetry 
may be divided into contributions from the a and u electrons: 

(7 = (7~ + (7 ~. (2) 
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Although the operators in Eqs. (1) and (2) refer to any electron it is useful when 
considering an it electron to combine /7  and Gc; into a core Hami l ton i an /7 ,  i.e. 

/7° = / 7  + d (3) 

so that 
P =/7~ + C *. (4) 

The n MOs are eigenfunctions of ff with orbital energies ei: 

?0, = (5 )  

At this point the LCAO expansion is introduced for the ~ MOs, which are exclusive 
of the a MOs by symmetry: 

t#, = Z Cp, ~b r. (6) 
P 

In a minimal basis ~bp would be a single 2pTt atomic orbital on atom p and, for 
benzene, the summation would be from p -- 1 to p = 6. The charge and bond order 
matrix, P, is defined by 

ep,, = 2 Z C,,*, C,,~, (7) 
iocc 

In parallel with Eq. (4), the elements of the Fock matrix, iv, are given by 

Fp~ = H;q + ~ P,~ [(pq/rs) - ½(ps/rq)]. (8) 
r s  

In the above equation the p, q, r, and s refer to real 2pro AOs and 

(pq/rs) = f f  q3,(1)c/)q(1) r?21 ~b,(2)q~(2) dvt dr2. (9) 

In parallel with Eq. (3), the elements of H c are given by 

H•q = Hpq "t" 2 Pp~ [(pq/pa) -- ½(pa/pq)], (10) 
pc; 

where p and a refer to the a-type AOs of the core. This way of defining the core 
Hamiltonian is implicit in Roothaan's original paper 1-14], although it is not 
explicitly found there. 

No approximations in the form of H c are contemplated here, but it is useful to 
see how a core Hamiltonian like that of GMS could be obtained from an SCF core 
Hamiltonian by integral approximations. This does not seem to have been demon- 
strated elsewhere. The first approximation is the neglect of exchange between a and 
rc electrons, i,e. ignoring the integrals (pa/pq). Although the a and ~ orbitals are 
orthogonal by symmetry, this is a much more severe approximation than the ZDO 
approximation within the rc system. The Coulombic interactions between the a and 
rc electrons are then approximated by retaining only integrals of the form (pq/aa). 
In the GMS method, the potential due to the charge density around each sp 2 
hybridised carbon atom is treated as being effectively spherical. This could be 
modelled by giving the integral (pqlaa) the same (spherically averaged) value for all 
a orbitals on the same atom and with the same principal quantum number. Inner 
shell atomic orbitals (ls on carbon, designated K) are ignored and carbon nuclear 
charges correspondingly reduced by 2, on the grounds that 1 s orbitals make 
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a contribution to H~,q which is P~K times (pq/tctc), and this will almost exactly 
cancel the nuclear attraction integral 2 times (pq/r~). A similar but much less 
justified approximation leads to hydrogen atoms being ignored altogether. 
The contribution of hydrogenic 1 s orbitats (designated rl) to H~q is P,, times 
(pq/tlrl), and this partially (but not entirely) cancels the nuclear attraction integral 
(pq/rH). 

The approximation which wilt be introduced - to simplify the algebra - is the 
neglect of ~ repulsion integrals (pq/rs) when either p ¢ q or r ¢ s. Such integrals are 
known 1,12] to be quite small ( < 0.12 eV) provided that p, q, r and s refer to the 
symmetrically orthogonalised 2pro atomic orbitals, i.e. L6wdin orbitals 1,15]. From 
now on it is assumed that p refers to a L~Swdin orbital Z~ and not to a Slater-type 
orbital (STO) ~bp, i.e. 

Z = qSS- 1t2, (11) 

where S is the matrix of overlap integrals between STOs. The effect of the ZDO 
approximation upon gross quantities like G;q will be investigated in the next 
section. 

Within the ZDO simplification, the formulation of the Fock matrix elements 
and the total rt energy becomes similar to the PPP scheme, except that H~q is now 
defined ab initio. Equation (8) becomes 

F~p = H~p + ½Ppe (PP/PP) + ~ Pqq(PP/qq) (12) 
q ¢ P  

and 
Fpq = HCpq - -  ½ Ppq(pp/qq), p ¢- q. (13) 

The total energy of the n system is given by 

E~ = Z Z  [PpqHC~q + ½ P, q G;q] (14) 
P q 

1 = 2-iPp,  [2H; ,  + ½Ppp(pp/pp) + ~ Pqq(pp/qq)] 
P q C P  

+ E E l-PpqH;q - ¼P~,q(pp/qq)]. (15) 
P q e P  

The above expression is still valid when the n MOs are localised, i.e. the LCAO 
coefficients do not have to be eigenvectors ofF.  Also, for an alternant hydrocarbon 
like benzene, Ppp = I for each carbon atom p, whether the MOs are localised or not. 
Hence, Eq. (15) becomes 

E~= Z1'H,p + ¼7,, + Z (½7pq + P, qH,q t 2 ~ - ~PeqT,q)], (16) 
P q ~ P  

where (pp/qq) has been replaced by 7pq. Since the carbon atoms are equivalent, 
a convenient form of Eq. (16), which compares with Hfickel theory, is 

1 2 E ~ = 6~ + 6 ~, (H~qP~q -~PlqT~q) ,  (17) 

w h e r e  q ~ 1 

q ¢ 1  
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The evaluation of  the integrals 

The required integrals could have been obtained by modification of a standard 
SCF package. However, given the ZDO approximation, only a very few matrix 
elements are required for a molecule with high symmetry like benzene, and it is 
possible to deduce what these must be from SCF orbital energies and from 
theoretical (single-configuration) energy levels already in the literature. This ap- 
proach is instructive, because of the link with spectroscopy. 

For  the determination of the electronic energy levels of benzene, the canonical 
MOs are most conveniently expressed in complex form: 

,,//-d~gj = Z z p e x p ( 2 r c i p j / 6 ) ,  j = O, -k 1, +_- 2, 3. 
P 

The lowest rc-.  ~* transition then corresponds to the orbital substitution 
~+1 ~ _ + 2 ,  and gives rise to electronic states 3Blu, 1Bxu, 3B2,, 1B2,, 3E~u and 
aElu. From expressions for these energy levels [16], determined in the one- 
configuration approximation, it can be shown that the simple average of the four 
B, term energies is given by 

AE(B.) = ~ 2  - ~ 1  - J21 -}- K-21-  (18) 

The average of the 3E~. and 1E~. energies provides another useful equation for 
the determination of molecular integrals: 

AE(Elu) = ez - el - -  J21 + K 2 1 .  (19) 

Now the difference between the orbital energies above is readily expressed as a 
difference between Fock matrix elements (in the )~ basis): 

e 2 -  el = - 2(F12 - F14) = - 2(H]2 - H I 4 ) -  2(G]2 - G~4). 

The subscripts of H ~ and G ~ refer to the atomic orbitals, those of J, K and e refer 
to MOs. Expressions for molecular integrals provided by Parr et al. [17] (PCR) 
reveal that, in the ZDO approximation, J 2 1 -  K-21  has the same value as 
- 2(G]z -- GIg); both integrals are equal to (-~ ~2  + ½~4), where the 7 integrals 

refer to the Z basis. Hence, a simple cancellation occurs, and 

AE(B,) ~--- -- 2 ( H ] 2  - H I 4 ) .  (20) 

Thus, if the ZDO approximation for repulsion integrals were accurate, and a one- 
configuration description of each level were adequate, the average 1Alg ~ B, 
excitation energy would be -2/?, where/~ is (HI 2 - H]4). The same [/turns out to 
be the main determinant of DE, so that the analogy with Huckel's/~ is obvious. 

How accurate is Eq. (20)? Since its derivation does not depend on the nature of 
the core Hamiltonian, its accuracy can be tested by comparing the value of the 
GMS core integral, - 2(HIe -- HI4) with the GMS value of AE(Bu) determined 
with a full set of accurate repulsion integrals. Moskowitz and Barnett [28] recal- 
culated the GMS energy levels with more accurate repulsion integrals than were 
available either to GMS or PCR. They found AE(B,) to be 5.38 eV which is very 
close indeed to the value (5.358) of - 2]? using a GMS core. Thus, it seems that 
Eq. (20) is quite accurate at least if a basis of symmetrically orthogonalised 
STOs (orbital exponent ~ = 1.59) is used. Surprisingly, the ZDO estimate of the 
two-electron contribution to AE(B,), i.e. zero, is actually closer to the correct 
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theoretical value than is the estimate obtained by using the full set of PCR 
integrals. According to PCR the "full" value of - 2(G]2 - G~,) is 7.577 eV, while 
the full value of J12 - K - 2 1  is 7.443 eV. The ZDO value in each case is 7.573 eV 
(using values Y12 = 8.92 eV and Y14 = 4.88 eV obtained by McWeeny [19] from the 
PCR set of integrals). 

Thus, the value of 2fl for an SCF core may be deduced from a calculation of the 
electronic spectrum of benzene at the SCF level, provided a simple STO description 
of the rt orbitals is used. Such a calculation has been provided by Stevens et al. [20], 
using orbital exponent ~ = 1.69. The theoretical value of AE(B,) was 7.12 eV, 
indicating/~ = - 3.56 eV, assuming that Eq. (20) is not less valid at the slightly 
higher ~ value. The SCF orbital energy difference (e2 - el) is 14.74 eV for this 
calculation, which indicates from Eq. (18) that J21 - K_ 21 is 7.61 eV. The theoret- 
ical value of the AE(EI~) transition energy is 8.82 eV, which indicates, from Eq. (19), 
that J~2 - K12 is 5.92 eV. Values of ~2 and Y~4 consistent with these molecular 
integral values are 8.97 and 4.89 eV, respectively. 

As is well known, a linear combination of Gaussian functions, with fixed or 
variable coefficients, can be a better description of a 2pro atomic orbital than 
a single Slater function. The present work uses the STO description in the first 
instance, partly because of the connection with the historic calculations and partly 
because Eq. (20) is not really established for ~ functions which are groups of 
Gaussians. Nevertheless, it is interesting to see how different basis sets affect the 

too daring to suggest that Table 1 indicates how fl varies value of AE(Bu), and not 
with basis set. 

Considering Table 1, 
orbitals as a fixed group 

there are two calculations [21, 22] which treat the 2pro 
of Gaussian functions, and the better variational calcu- 

lation [21-1 suggests a I/~1 value of 3.37 eV. The lowest value in (3.20 eV) in Table 1 
arises from an extended basis set calculation [23] where /3 cannot be defined 
uniquely and where the ZDO approximation and Eq. (20) are less likely to be 
accurate. The typical ab initio value of I/~1 is larger than the GMS value (2.679 eV), 
which in turn is larger than the semi-empirical values of Pariser and Parr (2.39 eV) 
and Pople (2.13 eV). The explanation for the last value will be given in the next 
section. 

Method I for DE 

In a minimal basis, P is completely determined by symmetry and for the canonical 
MOs one finds 

P11 1, P12 2, P16 2, P13 0, P14 1 

Substituting these values into Eq. (17) gives 

E a~l°c = 6~ + 8 HI2 -- 2H]4 -- ~712 -- ~ Y14. (2i) 

Table 1. 

SCF calculations and basis Description of 2pn orbital AE (Bu)/2 eV 

Ref. [20] Minimal STO Single STO, ~ = 1.69 3.56 
Ref. [22-1 (7s, 3p/3s) GTO One group of 3 functions 3.30 
Ref. [21] (10s, 5p/5s) G-lobes One group of 5 functions 3.37 
Ref. [23] (10s, 5p/5s) G-lobes Two groups, 4 functions and 1 function 3.20 
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For  the non-resonating structure a simple way of choosing the localised MOs is 
to combine Z functions from adjacent atoms: 

 ,56 = ( z5  + = ( z l  + = ( z3  + 
(22) 

A similar method seems to have been used by Glendening et al. [2] (although their 
basis was not  minimal and therefore the choice of orthogonal hybrid orbitals on 
each centre was not unique). With the above MOs doubly occupied, the elements of 
ploc are 

D I ° c  ~-~ 0 .  p ] o ~ = l ,  pllo~=1, p lo~=0,  p~o{ O, * ,4  

Substitution of these values into Eq. (17) gives 

E 1°~ = 6~ + 6H~2 - -371z .  (23) 

The subtraction of Eq. (23) from Eq. (21) now yields 

E d~l°~ E 1°~ = DE = -- 2(H]2 -- H~4) 1 -- + ~(Y12 - 7x4)- (24) 

The above expression shows that DE is dominated by the one-electron part, 2fl, 
as might be expected from a Hiickel theory. The result is formally similar to a result 
obtained many years ago by Pople [9], if one allows his approximations 
HI4 ~ 0 (neglect of non-neighbour resonance integrals) and Yvq "~ d~q 1, where dvq 
is the distance between atoms p and q. However, Pople's derivation was based 
on more drastic approximative assumptions than these, and it is important  to 
see how a result of the same form as Pople's has been obtained without his 
approximations. 

In Popte's treatment the reference system is not cyclohexatriene, but consists 
of three separate ethylene molecules with benzenoid bond lengths. Since the a 
framework of benzene is not the same as the framework(s) of the reference system, 
Pople introduced effective nuclear repulsions between the core atoms (effective 
charge = + 1). In order to use the same core integrals in both benzene and 
ethylene, Pople had to assume that the monatomic part of HI ~ was independent of 
environment and that H~2 was purely diatomic in character. In the present 
derivation the o- framework of benzene is the same as that of the non-resonating 
triene, and therefore the core integrals are the same in both systems, and there is no 
need to introduce nuclear repulsions. The localised electron pairs are not indepen- 
dent: each rc electron interacts with the n electrons in other bonds and with the 
nuclear centres in other bonds. 

It is not difficult to show that Pople would have obtained precisely the same 
result even if his model for the non-resonating molecule had been cyclohexatriene, 
because of the approximations that he used. Pople assumed, in effect, that the 
electron-nucleus attraction integral, (pp/rq), had the same magnitude as the elec- 
tron-electron repulsion integral, Yvq and that both integrals were equal to dvq ~, the 
repulsion between core atoms p and q. These approximations ensure that 
terms which should otherwise be added to E J°~, to change the reference system 
from three ethylenes to cyclohextriene, actually sum to zero. Given the same 
reference system as in this work, Pople's derivation then differs from the fore- 
going only in the formulation of diagonal matrix elements and through 
the inclusion of nuclear repulsions. Since these terms vanish when E 1°~ is subtracted 
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from E de,o% the same result will be obtained by either derivation, but the interpreta- 
tion of the/3 and ~, integrals will be different. All the integrals in this work refer to 
explicitly orthogonalised orbitals, and the/3 integral involves all the centres of 
force. 

There are obvious advantages to the non-empirical treatment. In the semi- 
empirical approach, the assumption that effective nuclear charges are + 1 is 
somewhat arbitrary, and is really part of the parametrisation of H~pq. Moreover, 
in the presence of nuclear repulsions, it is not clear that the terms which "correct" 
the simple Hiickel result are due to electronic repulsion. In the non-empirical 
approach, there is no need to assume that core matrix elements are transferable, or 
that non-neighbour core matrix elements are negligible, to get a neat result for 
benzene. Because of the symmetry of benzene, HI3 does not appear and H~4 is 
found within the/3 integral (HI2 - H]4,)just  as it is for the expression for AE(B,). 

The apparent disadvantage of the more rigorous derivation is its numerical 
result. With the values of/3, 712 and 714 determined in the previous section for 
STOs (ff = 1.69) one finds DE = - 148 kcal t o o l - 1  (As will be shown in the next 
section, the ZDO approximation overestimates the two electron contribution to 
DE, whose value for this wave function is nearer to - 1 5 5  kcalmol-1.)  This is 
similar to the result obtained by Glendening et al. and is about twice the empirical 
value of Parr  and Mulliken. Pople found that he could reproduce the empirical 
value with/3 = - 2 . 1 3  eV, but such a low magnitude is unacceptable in a non- 
empirical calculation. Table 1 suggests that improving the basis set will not give 
a/3 of this magnitude. Whether a CI treatment, with or without excitations from the 
core, would explain such a low magnitude of/3 is questionable; and anyway is 
simpler explanation is available. There is something wrong with the localisation 
procedure of method I. 

Method II for DE 

The method of combining adjacent OAOs to make localised MOs has the appeal of 
simplicity because n bond orders are 1 between n-bonded atoms and zero else- 
where. However, bond orders in an orthogonal basis can give a deceptive picture of 
the actual charge distribution. The model wave function of method I actually 
contains too much orthogonality. It is not necessary that the AOs in each n bond 
should be orthogonal to each other and to the other AOs. This creates small 
amounts of negative overlap density between adjacent atoms which are not 
n-bonded. 

A better route to localised MOs is to follow Kollmar [4] and Parr and 
Mulliken [7]: ethylenic MOs are formed from non-orthogonal AOs and then the 
MOs are orthogonalised on a benzene framework. Firstly, it is necessary to 
reconstitute the STO basis by reversing the transformation of Eq (11), i.e. 

= zS1/2.  

With ~ = 1.69, the overlap integrals are 

S,2 = 0.226, $13 = 0.0286, $14 = 0.0122. 

These values lead to the following expression for the STO on atom 1 in terms of the 
Z basis: 

01 = 0.9869Z, + 0.1136(Z2 + Z6) + 0.0074(Z3 + Zs) + 0-0045Z~. (25) 
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The other gb's can be deduced by symmetry. The localised MOs take the following 
(unnormalised) form after symmetric orthogonalisation: 

1/t34 ~ (~b3 @ t~4) - -  /~(q~l + ~ 2 )  - -  2((])5 "}- q~6), 

•56 ~ (~b5 + q~6) - 2(qSa + ~b2) - 2(q~3 + q54). (26) 

With the given overlap integrals, 2 is 0.0556, and in the )~ basis the localised MOs 
a r e  

x//NO~2 = 1-0931 (Z~ + X2) + 0.0591 (X3 + 26) -- 0.0560()~4 + )~s), 

~v/-N ~k34 = 1.0931 (23 + )~4) + 0.0591 (Z2 + Zs) -- 0.0560(Z~ + )~6), 

N/~056 = 1.0931(Z5 + Z6) --t- 0.0591 (Zl + Z4) -- 0.0560(Z2 + Z3). (27) 

These functions are rendered orthogonal by each having a small negative "tail" on 
the opposite side of the molecule. Normalisation gives N = 2.403, and the new 
elements of P~°~ are 

P I T = l ,  P17=0.9890, ~t 16Dl°c = 0.1102, Pl°3c=0.0, Pl1°,~ = - 0 . 0 9 9 1 2 .  

The new method has created a small positive re-bond order between adjacent atoms 
(e.g. t and 6) where none existed before, and a small negative bond order between 
opposite atoms. The localised structure is made more stable by the existence of the 
new bond orders between adjacent atoms. Useful relationships exist between the 
bond orders which mean that, upon substituting them into Eq. (17), a very simple 
result for E 1°~ is obtained. Because the total bond order is fixed, the sum of the 
above elements is 2. Because ½ P is idempotent, the sum of the squares of the above 
elements is also 2. Hence, on substitution into Eq. (17) one obtains 

E l °e  = 6, + 6HC2(1 - P )  + 6 H c 4 p  - ~712(1 - p2) _ 3 ~ 4 p 2  ' (28) 

where P = - p~,o~, Subtraction of Eq. (28) from Eq. (21) then yields 

DE = E d~°~ -- E ~°~ = -- 2 ( H ~ z  - -  H~,~) (1 - 3P) + ~(~'12 -- ? ~ )  (1 -- 9P2). 
(29) 

Clearly, Eq. (24) is a special case of Eq. (29) above, with P = O. Substituting 
P =0.0991 gives a value of - 1 0 1  kcalmo1-1 for DE which corresponds to 
a reduction of about 32% on the previous magnitude for DE. This reduction is 
almost entirely due to the one-electron contribution: the positive part of DE 
changes only by 10%. The empirical value ( -  78.4 kcalmo1-1) is still far off, but 
before considering how to improve the result it will be demonstrated that the 
transformations leading to Eq. (27) are accurate, and the error introduced by the 
ZDO approximation will be estimated. 

Parr and Mulliken [7], in their non-empirical calculation, built their localised 
MOs as follows: 

0 1 2  ~ (~bl + 1~2), I//34 ~ (q~3 Jr- ~b4), I//56 '~' (q~5 -I- q~6). (30)  

These MOs are not orthogonal, but, apart from the STO exponent used (( = 1.59), 
they describe the localised structure in exactly the same way as the MOs of Eq. (26), 
because the two sets of MOs are formally connected by a linear transformation. 
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Therefore the method of this section should give exactly the same DE as Parr and 
Mulliken provided that the same overlap and energy integrals are used. Their 
overlap integrals were 

$12 = 0.260, $13 = 0.0389, $1¢ = 0.0177. 

bloc 0.112. Substi- With these overlap integrals, the above procedure leads t o ,  14 = - 
tuting this value into Eq. (29), together with the GMS value of f l ( -  2.679 eV), 
exactly reproduces the one-electron contribution to DE ( - -82 .1kcalmo1-1)  
found by Parr and Mulliken. This confirms that the linear transformations are 
accurate. 

However, the two-electron contribution is found to be 13.8 kcal mot-1  (using 
7 1 z -  714 = 4.04 eV), whereas Parr and Mulliken obtained 9.0 kcalmo1-1. The 
difference, about 4.8 kcalmo1-1, is caused by using the ZDO approximation 
instead of the full set of (PCR) repulsion integrals. It seems that the cancellation of 
errors which favours the ZDO estimation of the two-electron contribution to 
AE(Bu) does not apply in the calculation of DE. In particular, the diagonal 
elements of G ~°c and G a~°c do not cancel exactly in a calculation using a full set of 
repulsion integrals. The largest source of ZDO error is the neglect of integrals of the 
form (12/qq). Such integrals are multiplied in energy calculations by P1;, not by 
PZ~ z. Thus, the main part of the ZDO correction behaves like a one-electron term; 
and it can be shown that if the error by method I is c~, then the error by method II is 
6(1 - 3P). These considerations suggest that the error in method I for the STO 
basis is 4.8/(1 - 3P), or about 7 kcalmo1-1 

The effect of an improved AO basis upon DE may now be investigated. The 
best variational calculation [21] in Table 1 which uses a single group of functions 
to describe the 2pro orbital suggests a t1?1 value of 3.37eV. Calculations on 
butadiene [24] using the same AOs indicate the following overlap integrals at 
interatomic distances appropriate to benzene: 

$12 = 0.322, $13 = 0.0789, $1¢ = 0.0479. 

After forming localised MOs with these overlaps one finds ~1¢D1°c = _ 0.129, which 
gives a one-electron part to DE which is 61% of 217, or -95 .1  kcalmo1-1. 
Estimates of the repulsion integrals for this basis, consistent with the theoretical 
spectrum at the one-configuration level, are 7t2 = 8.61 eV and "Y1¢ = 4.81 eV. Thus, 
the value of DE for the fixed Gaussian-lobe basis [21] is estimated to be about 
-82 .7  kcal tool-1. The improvement over the minimal STO result comes partly 

from the smaller magnitude of 17, but mainly from the larger overlap integral. 
The result compares well with the value ( -  85.2 kcal mol-1)  obtained by Shaik et 
al. [3]. If method I and Eq. (24) had been used with the same integrals, a DE 
value - 142 kcal mol - 1 would have been obtained, which compares well with the 
value (-- 147 kcal mol-1)  of Glendening et al. [2]. In each case the ZDO error 
has made the results of this work look slightly better than they are. It is the 
results of the extended basis set calculations which should be closer to the empirical 
value. 

Discussion 

The fact that two methods of calculating DE give such widely separated results, 
underlines the problem of describing the non-resonating triene with an MO wave 
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function. Using non-orthogonal atomic orbitats (method II) to make the localised 
MOs clearly gives results which are closer to the empirical value, the improvement 
over method I being approximately proportional to the near-neighbour overlap 
integral. Methods which formally ignore the overlap integral - like those of Hiickel 
and Pople - cannot account for this improvement and therefore assume a smaller 
magnitude of/3 in order to reproduce the empirical result. This explanation of the 
magnitude of /3 used in the semi-empirical calculations of resonance energies 
appears to be novel. 

An answer can now be given to the old question, originally raised by Hiickel 
theory, as to why the rc ~ n* excitation energy is greater than (minus) DE and 
why neither quantity is equal to [2/?J. The excitation energy would indeed be [2/~[ 
provided that a simple average of 1Blu, 3Blu, 1B2,, and 1Bzu excitation energies is 
taken, and each excitation energy is determined theoretically in a one-configura- 
tion approximation. The experimental value of AE(Bu) is about 70% of the SCF 
value [25] of [2/3[, because the one-configuration approximation is inadequate. 
By contrast, the empirical value of DE is about 50% of 2/3 for reasons which 
lie mainly within MO theory itself. The one-electron contribution would be 2/~ if 
pairs of OAOs were used to form the two-centre MOs. Using non-orthogonal 
AOs changes the one-electron contribution by about 39% of 2/~. The remain- 
ing reduction, or about 11% of 2/~, is due in almost equal measure to the 
electronic repulsion between the n MOs and the combined effects of o--n and rc-r~ 
correlation. 

The better variational calculations favour the localised structure, and reduce 
the magnitude of DE. A value of - 8 5  kcal mol-1 probably represents the limit of 
exact MO calculations using method II. Parr and Mutliken obtained 
-73.1 kcalmo1-1 using a simple STO description of the lr MOs. This small 

magnitude comes from using the GMS core Hamiltonian (/~ = - 2.679 eV). If the 
core Hamiltonian appropriate to a minimal basis SCF calculation (/? = - 3.5 eV) 
had been used, Parr and Mulliken would have obtained a value around 
- 100 kcal mol-  1. 

Origin of the deloealisation energy 

Ever since the work of Parr and Mulliken it has been known that the contribution 
of the n-electronic repulsion to DE is relatively small and in favour of the localised 
structure (i.e. positive). The main part of DE is calculated from an effective 
one-electron Hamiltonian, and to this extent the Hiickel theory was roughly 
correct. The n electrons delocalise because/~ is negative. But why is/3 negative? It is 
easy to show that the part of [3 which is associated with the kinetic energy operator 
is about --7.2 eV, so that the potential energy part is actually positive. Thus, in 
sofar as n-delocalisation can be considered in a fixed a framework, its origin lies in 
the lowering of kinetic energy. 

The role of the kinetic energy in binding, and its relation to potential energy, 
was originally investigated by Ruedenberg and his school. Ruedenberg [26] has 
also given the correct interpretation of the resonance integral. The wrong inter- 
pretation, in terms of a negative total contribution from potential energy, comes 
from visualising the attraction of a nuclear centre for an overlap charge distribu- 
tion in terms of conventional, non-orthogonal AOs, and then turning a blind eye to 
the presence of overlap integrals in the MO normalisation factors. Thus, the formal 
neglect of the overlap integral, where this does not imply an orthogonalisation of 
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the basis, is no t  jus t  one approx imat ion  amongs t  others. It  actually suggests 
a wrong  physical model.  

To  sum up, the overlap integral  is implicitly involved twice in the expression for 
DE: once, in the in terpre ta t ion  of fl, and  again in account ing  for the addi t iona l  
stabil i ty which non -o r thogona l  AOs give to the localised structure. Both factors 
mus t  be borne  in mind  if a Hiickel type of formalism is to be associated with 
a qual i ta t ively correct model  of r~ delocalisation. 
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